I B.Tech - II Semester - Regular/Supplementary Examinations

 April - 2018
ELECTRICAL CIRCUIT ANALYSIS - I (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks

$$
11 \times 2=22 \mathrm{M}
$$

1. a) State Ohm's law and KVL.
b) Determine v_{x} in the following circuit.

c) Apply mesh analysis for the following circuit and write the KVL equation for loop 1 and 2.

d) Write the steps to determine the node voltages with an example.
e) Compare series and parallel resonant circuits with respect to
i) impedance at resonance
ii) Current at resonance
iii) power factor at resonance and iv) Q-factor
f) Define bandwidth of a series resonant circuit.
g) Write any two applications of delta connection.
h) 3 coils, each having a resistance of 20Ω and an inductive reactance of 15Ω are connected in star to a $400 \mathrm{~V}, 3$-phase, 50 Hz supply. Calculate the line current.
i) What is the Universal method of measuring power in a 3-phase circuit? Through a diagram show the connections.
j) The ratio of the reading of 2 watt meters connected to measure power in a 3 -phase balanced load is $3: 1$. The load is known to be inductive with a lagging power factor. Calculate the power factor.
k) Convert the current source in the following circuit in to an equivalent voltage source.

PART - B

Answer any THREE questions. All questions carry equal marks. $3 \times 16=48$
2. a) Calculate the current through the 2Ω resistor by making use of source transformation.

b) Convert the following Δ - network to an equivalent Y- network.

3. a) Find the branch currents $I_{1}, I_{2} \& I_{3}$ using mesh analysis.

8 M

b) Use the nodal analysis to determine the current through R_{3} of the following circuit.

4. a) Draw the power triangle and show the relation between apparent power, true power and reactive power.
b) A coil having a resistance of 7Ω and an inductance of 31.8 mH is connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) the circuit current (ii) phase angle (iii) power factor and (iv) power consumed.

10 M
5. A balanced 3-phase load consists of three coils, each of the resistance 6Ω, and inductive reactance of 8Ω. Determine the line current and power absorbed when the coils are i) starconnected ii) delta-connected across 400 V , 3 -phase supply.

16 M
6. a) Each of the two wattmeters connected to measure the input to a 3 -phase induction motor reads 10 kW . If the power factor of the motor be changed to 0.866 lagging, determine the readings of the two wattmeters, the total input power remaining unchanged.

8 M
b) An unbalanced Y-load has balanced voltages of 100 V and the acb sequence. Calculate the line currents and the neutral current. Assume $\mathrm{Z}_{\mathrm{A}}=15, \mathrm{Z}_{\mathrm{B}}=10+\mathrm{j} 5 \Omega, \mathrm{Z}_{\mathrm{C}}=6-\mathrm{j} 8 \Omega$.

