Code: EE2T5

I B.Tech - II Semester – Regular/Supplementary Examinations April - 2018

ELECTRICAL CIRCUIT ANALYSIS - I (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

11 x 2 = 22 M

- 1. a) State Ohm's law and KVL.
 - b) Determine v_x in the following circuit.

c) Apply mesh analysis for the following circuit and write the KVL equation for loop 1 and 2.

- d) Write the steps to determine the node voltages with an example.
- e) Compare series and parallel resonant circuits with respect to
 i) impedance at resonance
 ii) Current at resonance
 iii) power factor at resonance and
 iv) Q-factor
- f) Define bandwidth of a series resonant circuit.
- g) Write any two applications of delta connection.

Page 1 of 4

- h) 3 coils, each having a resistance of 20 Ω and an inductive reactance of 15 Ω are connected in star to a 400 V, 3-phase, 50 Hz supply. Calculate the line current.
- i) What is the Universal method of measuring power in a 3-phase circuit? Through a diagram show the connections.
- j) The ratio of the reading of 2 watt meters connected to measure power in a 3-phase balanced load is 3:1. The load is known to be inductive with a lagging power factor. Calculate the power factor.
- k) Convert the current source in the following circuit in to an equivalent voltage source.

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48$

2. a) Calculate the current through the 2 Ω resistor by making use of source transformation.8 M

Page 2 of 4

b) Convert the following Δ - network to an equivalent

Y- network.

3. a) Find the branch currents I_1 , I_2 & I_3 using mesh analysis.

8 M

b) Use the nodal analysis to determine the current through R₃ of the following circuit.
 8 M

4. a) Draw the power triangle and show the relation between apparent power, true power and reactive power.6 M

using mash (

8 M

- b) A coil having a resistance of 7 Ω and an inductance of 31.8 mH is connected to 230 V, 50 Hz supply. Calculate (i) the circuit current (ii) phase angle (iii) power factor and (iv) power consumed.
 10 M
- A balanced 3-phase load consists of three coils, each of the resistance 6 Ω, and inductive reactance of 8 Ω. Determine the line current and power absorbed when the coils are i) star-connected ii) delta-connected across 400V, 3-phase supply.
 16 M
- 6. a) Each of the two wattmeters connected to measure the input to a 3-phase induction motor reads 10kW. If the power factor of the motor be changed to 0.866 lagging, determine the readings of the two wattmeters, the total input power remaining unchanged.8 M
 - b) An unbalanced Y-load has balanced voltages of 100V and the acb sequence. Calculate the line currents and the neutral current. Assume $Z_A = 15$, $Z_B = 10 + j5 \Omega$, $Z_C = 6-j8 \Omega$.

8 M